Overview of non-invasive sampling methods used in intensive swine farming

Main Article Content

Dimitrije Glisic
Ljubiša Veljović
Bojan Milovanović
Milan Ninković
Jelena Maletić
Branislav Kureljušić
Vesna Milićević


Monitoring the health of swine herds is essential to ensure good manufacturing practices. Traditionally, active and passive surveillance on farms involved invasive sampling methods, where specific animals were selected, restrained, and sampled. However, with the increasing intensity of swine production, alternative methods for effective herd surveillance became necessary.
Non-invasive sampling provides a convenient and cost-effective approach to monitor the entire herd without compromising animal welfare, while still obtaining suitable samples for testing. Oral fluids have been widely used in both human and livestock health surveillance for various viral pathogens, including significant diseases. Nasal wipes (NW) utilize different cloth materials soaked in phosphate-buffered saline (PBS) or tissue culture medium with antibiotics and antimycotics to sample for swine influenza virus (SIV). Udder skin wipes (USW) offer an alternative method to assess the health status of piglets in a litter. During routine procedures such as tail docking and castration, a mixture of blood and serum can be collected, known as process fluids (PF), which has proven successful in monitoring herds for the presence of porcine reproductive and respiratory syndrome virus (PRRSV). Furthermore, air sampling has emerged as a novel technique to detect pathogens in various farming systems and animal species. This method offers the advantage of obtaining diagnostic samples without direct animal contact.
By employing these non-invasive sampling methods, swine producers can implement effective surveillance strategies while maintaining animal welfare standards and obtaining reliable diagnostic information.


Download data is not yet available.

Article Details

How to Cite
Glisic, D., Veljović, L. ., Milovanović, B., Ninković, M., Maletić, J. ., Kureljušić, B., & Milićević, V. (2023). Overview of non-invasive sampling methods used in intensive swine farming. Veterinarski Glasnik, 77(2), 97–108. https://doi.org/10.2298/VETGL230614004G
Author Biographies

Ljubiša Veljović, Institute of Veterinary Medicine of Serbia

Department of Virology. 

Bojan Milovanović, Institute of Veterinary Medicine of Serbia

Department of Pathology

Milan Ninković, Institute of Veterinary Medicine of Serbia

Department of Serology

Jelena Maletić, Institute of Veterinary Medicine of Serbia

Department of Poultry Diseases

Branislav Kureljušić, Institute of Veterinary Medicine of Serbia

Department of Pathology

Vesna Milićević, Institute of Veterinary Medicine of Serbia

Department of Virology


Almeida M.N., Zimmerman J.J., Wang C., Linhares D.C.L. 2018. Assessment of abattoir based monitoring of PRRSV using oral fluids. Preventive Veterinary Medicine, 158:137–145. https://doi.org/10.1016/j.prevetmed.2018.08.002

Andersen K.B., Engberg R.M., Skov J. 2022. A new tool for air sample-based surveillance of Campylobacter and Salmonella in poultry flocks. Journal of Applied Poultry Research, 31:100236. https://doi.org/10.1016/J.JAPR.2022.100236

Bjustrom-Kraft J., Woodard K., Giménez-Lirola L., Rotolo M., Wang C., Sun Y., Lasley P., Zhang J., Baum D., Gauger P., Main R., Zimmerman J. 2016. Porcine epidemic diarrhea virus (PEDV) detection and antibody response in commercial growing pigs. BMC Veterinary Research, 12:99. https://doi.org/10.1186/s12917-016-0725-5

Boulbria G., Normand V., Leblanc-Maridor M., Belloc C., Berton P., Bouchet F., Lebret, A., 2020. Feasibility of pooled oral fluid collection from pre-weaning piglets using cotton ropes. Veterinary and Animal Science, 9:100099. https://doi.org/10.1016/J.VAS.2020.100099

Brent P., Fangfang L., Rodger M., Alejandro R., Jeffrey Z. 2015. Collection of oral fluid from individually housed sows. Journal of Swine Health and Production, 23:35–37.

Brito B., Dee S., Wayne S., Alvarez J., Perez A. 2014. Genetic Diversity of PRRS Virus Collected from Air Samples in Four Different Regions of Concentrated Swine Production during a High Incidence Season. Viruses, 6:4424–4436. https://doi.org/10.3390/v6114424

Calderón Díaz J.A., Fitzgerald R.M., Shalloo L., Rodrigues da Costa M., Niemi J., Leonard F.C., Kyriazakis I., García Manzanilla E. 2020. Financial Analysis of Herd Status and Vaccination Practices for Porcine Reproductive and Respiratory Syndrome Virus, Swine Influenza Virus, and Mycoplasma hyopneumoniae in Farrow-to-Finish Pig Farms Using a Bio-Economic Simulation Model. Frontiers in Veterinary Science, 7:922. https://doi.org/10.3389/FVETS.2020.556674/BIBTEX

Chiappin S., Antonelli G., Gatti R., De Palo E.F. 2007. Saliva specimen: A new laboratory tool for diagnostic and basic investigation. Clinica Chimica Acta, 383:30–40. https://doi.org/10.1016/j.cca.2007.04.011

Colenutt C., Gonzales J.L., Paton D.J., Gloster J., Nelson N., Sanders C. 2016. Aerosol transmission of foot-and-mouth disease virus Asia-1 under experimental conditions. Veterinary Microbiology, 189:39–45. https://doi.org/10.1016/J.VETMIC.2016.04.024

Corthier G., Galicher C., Gelfi J. 1976. Swine fever : influence of passive immunity on pig immune response following vaccination with a live virus vaccine (thiverval strain). Annales de Recherches Vétérinaires, 7:361–372.

de Almeida M.N., Corzo C.A., Zimmerman J.J., Linhares D.C.L. 2021. Longitudinal piglet sampling in commercial sow farms highlights the challenge of PRRSV detection. Porcine Health Management, 7:31. https://doi.org/10.1186/s40813-021-00210-5

de Lara A.C., Garrido-Mantilla J., Lopez-Moreno G., Yang M., Barcellos D.E.S.N., Torremorell M. 2022. Effect of pooling udder skin wipes on the detection of influenza A virus in preweaning pigs. Journal of Veterinary Diagnostic Investigation, 34:133–135. https://doi.org/10.1177/10406387211039462

Dee S.A., Joo H.S., Polson D.D., Park B.K., Pijoan C., Molitor T.W., Collins J.E., King V. 1997. Evaluation of the effects of nursery depopulation on the persistence of porcine reproductive and respiratory syndrome virus and the productivity of 34 farms. Veterinary Record, 140:247–248. https://doi.org/10.1136/VR.140.10.247

Donaldson A.I., Ferris N.P., Gloster J. 1982. Air sampling of pigs infected with foot-and-mouth disease virus: comparison of Litton and cyclone samplers. Research in Veterinary Science, 33:384–385.

Edwards J.L., Nelson S.W., Workman J.D., Slemons R.D., Szablewski C.M., Nolting J.M., Bowman A.S. 2014. Utility of snout wipe samples for influenza A virus surveillance in exhibition swine populations. Influenza and Other Respiratory Viruses, 8:574–579. https://doi.org/10.1111/irv.12270

Food and Agriculture Organisation of the United Nations, 2020., 2020. FAO, Food et al. FAOSTAT statistical database. Rome.

Garrido-Mantilla J., Alvarez J., Culhane M., Nirmala J., Cano J.P., Torremorell M. 2019. Comparison of individual, group and environmental sampling strategies to conduct influenza surveillance in pigs. BMC Veterinary Research, 15:61. https://doi.org/10.1186/s12917-019-1805-0

Giménez-Lirola L.G., Mur L., Rivera B., Mogler M., Sun Y., Lizano S., Goodell C., Harris D.L.H., Rowland R.R.R., Gallardo C., Sánchez-Vizcaíno J.M., Zimmerman J. 2016. Detection of African Swine Fever Virus Antibodies in Serum and Oral Fluid Specimens Using a Recombinant Protein 30 (p30) Dual Matrix Indirect ELISA. PLoS One 11:e0161230. https://doi.org/10.1371/journal.pone.0161230

Grandin T., Shivley C. 2015. How Farm Animals React and Perceive Stressful Situations Such As Handling, Restraint, and Transport. Animals, 5:1233–1251. https://doi.org/10.3390/ani5040409

Henao-Diaz A., Giménez-Lirola L., Baum D.H., Zimmerman J. 2017. Guidelines for oral fluid-based surveillance of viral pathogens in swine. Porcine Health Management, 6:28. https://doi.org/10.1186/s40813-020-00168-w

International Committee for the Taxonomy of Viruses 2009. Family: Orthomyxoviridae Chapter Version: ICTV Ninth Report.

Kinsley A.C., Perez A.M., Craft M.E., Vanderwaal K.L. 2019. Characterization of swine movements in the United States and implications for disease control. Preventive Veterinary Medicine, 164:1–9. https://doi.org/10.1016/J.PREVETMED.2019.01.001

Kittawornrat A., Engle M., Panyasing Y., Olsen C., Schwartz K., Rice A., Lizano S., Wang C., Zimmerman J. 2013. Kinetics of the porcine reproductive and respiratory syndrome virus (PRRSV) humoral immune response in swine serum and oral fluids collected from individual boars. Preventive Veterinary Medicine, 9:61. https://doi.org/10.1186/1746-6148-9-61

Kittawornrat A., Panyasing Y., Goodell C., Wang C., Gauger P., Harmon K., Rauh R., Desfresne L., Levis I., Zimmerman J. 2014. Porcine reproductive and respiratory syndrome virus (PRRSV) surveillance using pre-weaning oral fluid samples detects circulation of wild-type PRRSV. Veterinary Microbiology, 168:331–339. https://doi.org/10.1016/j.vetmic.2013.11.035

Kittawornrat A., Prickett J., Wang C., Olsen C., Irwin C., Panyasing Y., Ballagi A., Rice A., Main R., Johnson J., Rademacher C., Hoogland M., Rowland R., Zimmerman J. 2012. Detection of Porcine reproductive and respiratory syndrome virus (PRRSV) antibodies in oral fluid specimens using a commercial PRRSV serum antibody enzyme-linked immunosorbent assay. Journal of Veterinary Diagnostic Investigation, 24:262–269. https://doi.org/10.1177/1040638711435679

Ma W., Kahn R.E., Richt J.A. 2008. The pig as a mixing vessel for influenza viruses: Human and veterinary implications. Journal of Molecular and Genetic Medicine, 3:158–66.

Martínez-Miró S., Tecles F., Ramón M., Escribano D., Hernández F., Madrid J., Orengo J., Martínez-Subiela S., Manteca X., Cerón J.J. 2016. Causes, consequences and biomarkers of stress in swine: an update. BMC Veterinary Research, 12. https://doi.org/10.1186/s12917-016-0791-8

Mestecky J. 1993. Saliva as a Manifestation of the Common Mucosal Immune System. Annals of the New York Academy of Sciences, 694:184–194. https://doi.org/10.1111/j.1749-6632.1993.tb18352.x

Nelson S.W., Hammons C.T., Bliss N.T., Lauterbach S.E., Zentkovich M.M., Lorbach J.N., Nolting J.M., Bowman A.S. 2018. Evaluation of nonwoven fabrics for nasal wipe sampling for influenza A virus in swine. Journal of Veterinary Diagnostic Investigation, 30:920–923. https://doi.org/10.1177/1040638718803999

Nieuwenhuis N., Duinhof T.F., Van Nes A. 2012. Economic analysis of outbreaks of porcine reproductive and respiratory syndrome virus in nine sow herds. Veterinary Record, 170:225–225. https://doi.org/10.1136/VR.100101

Nolting J.M., Szablewski C.M., Edwards J.L., Nelson S.W., Bowman A.S. 2015. Nasal Wipes for Influenza A Virus Detection and Isolation from Swine. Journal of Visualized Experiments, (106):e53313. https://doi.org/10.3791/53313

Olsen C., Karriker L., Wang C., Binjawadagi B., Renukaradhya G., Kittawornrat A., Lizano S., Coetzee J., Main R., Meiszberg A., Panyasing Y., Zimmerman J. 2013. Effect of collection material and sample processing on pig oral fluid testing results. The Veterinary Journal, 198:158–163. https://doi.org/10.1016/J.TVJL.2013.06.014

Panyasing Y., Goodell C.K., Giménez-Lirola L., Kittawornrat A., Wang C., Schwartz K.J., Zimmerman J.J. 2013. Kinetics of influenza A virus nucleoprotein antibody (IgM, IgA, and IgG) in serum and oral fluid specimens from pigs infected under experimental conditions. Vaccine, 31:6210–6215. https://doi.org/10.1016/j.vaccine.2013.10.040

Panyasing Y., Thanawongnuwech R., Ji J., Giménez-Lirola L., Zimmerman J. 2018. Detection of classical swine fever virus (CSFV) E2 and Erns antibody (IgG, IgA) in oral fluid specimens from inoculated (ALD strain) or vaccinated (LOM strain) pigs. Veterinary Microbiology, 224:70–77. https://doi.org/10.1016/j.vetmic.2018.08.024

Prickett J.R., Zimmerman J.J. 2010. The development of oral fluid-based diagnostics and applications in veterinary medicine. Animal Health Research Reviews, 11:207–216. https://doi.org/10.1017/S1466252310000010

Ramirez A., Wang C., Prickett J.R., Pogranichniy R., Yoon K.J., Main R., Johnson J.K., Rademacher C., Hoogland M., Hoffmann P., Kurtz A., Kurtz E., Zimmerman J. 2012. Efficient surveillance of pig populations using oral fluids. Preventive Veterinary Medicine, 104:292–300. https://doi.org/10.1016/j.prevetmed.2011.11.008

Schilling A.K., Mazzamuto M.V., Romeo C. 2022. A Review of Non-Invasive Sampling in Wildlife Disease and Health Research: What’s New? Animals, 12:1719. https://doi.org/10.3390/ANI12131719/S1

Trevisan G., Jablonski E., Angulo J., Lopez W.A., Linhares D.C.L. 2019. Use of processing fluid samples for longitudinal monitoring of PRRS virus in herds undergoing virus elimination. Porcine Health Management, 5:18. https://doi.org/10.1186/s40813-019-0125-x

Turlewicz-Podbielska H., Włodarek J., Pomorska-Mól M. 2020. Noninvasive strategies for surveillance of swine viral diseases: a review. Journal of Veterinary Diagnostic Investigation, 32:503–512. https://doi.org/10.1177/1040638720936616

Vilalta C., Baker J., Sanhueza J., Murray D., Sponheim A., Alvarez J., Sylvia F., Polson D., Torremorell M., Corzo C., Morrison R.B. 2019a. Effect of litter aggregation and pooling on detection of porcine reproductive and respiratory virus in piglet processing fluids. Journal of Veterinary Diagnostic Investigation, 31:625–628. https://doi.org/10.1177/1040638719852999

Vilalta C., Sanhueza J., Garrido J., Murray D., Morrison R., Corzo C.A., Torremorell M. 2019b. Indirect assessment of porcine reproductive and respiratory syndrome virus status in pigs prior to weaning by sampling sows and the environment. Veterinary Microbiology, 237:108406. https://doi.org/10.1016/j.vetmic.2019.108406

Vilalta C., Sanhueza J.M., Schwartz M., Kikuti M., Torremorell M., Corzo C.A. 2021. Assessing the litter level agreement of RT-PCR results for porcine reproductive and respiratory syndrome virus in testicles, tails and udder wipes diagnostic samples relative to serum from piglets. Preventive Veterinary Medicine, 186:105211. https://doi.org/10.1016/j.prevetmed.2020.105211

Most read articles by the same author(s)