Important bacterial diseases and their control in rainbow trout in Serbian aquaculture

Main Article Content

Vladimir Radosavljevic
https://orcid.org/0000-0002-8072-4169
Nemanja Zdravković
Ljubiša Veljović
Oliver Radanović

Abstract

Global freshwater fish production in aquaculture has grown rapidly in recent decades. This constant growth, involving novel forms of intensive aquaculture, has increased global movements of fish and boosted various anthropogenic stresses to aquatic ecosystems, so rainbow trout aquaculture has encountered the emergence and outbreaks of many bacterial diseases. Due to the need to effectively prevent and control disease outbreaks, vaccines have become an important technology in intensive trout aquaculture. In this review, the applications of specific vaccines against important bacterial diseases of rainbow trout in Serbian aquaculture are summarized.

Downloads

Download data is not yet available.

Article Details

How to Cite
Radosavljevic, V., Zdravković, N., Veljović, L., & Radanović, O. (2022). Important bacterial diseases and their control in rainbow trout in Serbian aquaculture. Veterinarski Glasnik, 76(2), 103–112. https://doi.org/10.2298/VETGL211217006R
Section
Review

References

Algammal AM., Mabrok M., Sivaramasamy E., Youssef FM., Atwa MH., El-kholy AW, Hetta HF., Hozzein WN. 2020. Emerging MDR-Pseudomonas aeruginosa in fish commonly harbor oprL and toxA virulence genes and blaTEM, blaCTX-M, and tetA antibiotic-resistance genes. Scientific reports, 10: 15961. https://doi.org/10.1038/s41598-020-72264-4

Austin B., Austin DA. 2016. Bacterial Fish Pathogens. Springer, Cham. https://doi.org/10.1007/978-3-319-32674-0_9

Cabello FC., Godfrey HP., Tomova A., Ivanova L., Dölz H., Millanao A., Buschmann AH. 2013. Antimicrobial use in aquaculture re-examined: its relevance to antimicrobial resistance and to animal and human health. Environmental microbiology, 15(7): 1917–1942. https://doi.org/10.1111/1462-2920.12134

Braden, L. M., Whyte, S. K., Brown, A., Iderstine, C. V., Letendre, C., Groman, D., Lewis, J., Purcell, S. L., Hori, T., & Fast, M. D. 2019. Vaccine-induced protection against furunculosis involves pre-emptive priming of humoral immunity in arctic char. Frontiers in immunology, 10: 120. https://doi.org/10.3389/fimmu.2019.00120

De Kievit TR., Parkins MD., Gillis RJ., Srikumar R, Ceri H., Poole K., Storey DG. 2001. Multidrug Efflux Pumps: Expression Patterns and Contribution to Antibiotic Resistance in Pseudomonas aeruginosa Biofilms. Antimicrobial Agents and Chemotherapy, 45: 1761–1770. https://dx.doi.org/10.1128%2FAAC.45.6.1761-1770.2001.

Declercq AM., Haesebrouck F., den Broeck WV., Bossier P., Decostere A. 2013. Columnaris disease in fish: A review with emphasis on bacterium-host interactions Veterinary Research, 44, p.

Delghandi MR., El-Matbouli M., Menanteau-Ledouble S. 2020. Renibacterium salmoninarum-The Causative Agent of Bacterial Kidney Disease in Salmonid Fish. Pathogens, 9(10): 845. https://doi.org/10.3390/pathogens9100845

Đorđević V., Baltić MŽ., Karabasil N., Ćirković M., Janković V., Mitrović R., Đurić J. 2012. Biohemijske karakteristike roda Aeromonas izolovanih iz kalifornijske pastrmke (Oncorhynchus mykiss). Tehnologija mesa, 53(1): 20-25. https://doi.org/10.5937/tehmesa1201020D

Duman M., Mulet M., Altun S., Saticioglu IB., Ozdemir B., Ajmi N., Lalucat J., García-Valdés E. 2021. The diversity of Pseudomonas species isolated from fish farms in Turkey. Aquaculture, 535: 736369.

FAO. 2018. The State of World Fisheries and Aquaculture 2018. Meeting the Sustainable Development Goals. Available online: http://www.fao.org/3/i9540en/i9540en.pdf.

Gómez E., Méndez J., Cascales D., Guijarro JA. 2014. Flavobacterium psychrophilum vaccine development: a difficult task. Microbial biotechnology, 7(5): 414–423. https://doi.org/10.1111/1751-7915.12099

Gravningen K., Sorum H., Horsberg TE. 2019. The future of therapeutic agents in aquaculture. Revue Scientifique et Technique (International Office of Epizootics). 38(2): 641-651. https://doi.org/10.20506/rst.38.2.3010

Hendriksen RS., Munk P., Njage P., Radosavljević V., van Bunnik B., McNally L., Lukjancenko O., Roder T., Nieuwenhuijse D., Pedersen SK., Kjeldgaard J., Kaas RS., Clausen PTLC., Vogt JK., Leekitcharoenphon P., van de Schans MGM., Zuidema T., de Roda Husman AM., Rasmussen S., Petersen B., Amid C., Cochrane G., Sicheritz-Ponten T., Schmitt H., Alvarez JRMA., Aidara-Kane A., Pamp SJ., Lund O., Hald T., Woolhouse M., Koopmans MP., Vigre H., Petersen TN., Aarestrup FM. 2019. Global monitoring of antimicrobial resistance based on metagenomics analyses of urban sewage. Nature Communications, 10 (1): 1124. https://doi.org/10.1038/s41467-019-08853-3

Hoare R., Ngo TPH., Bartie KL., Adams A. 2017. Efficacy of a polyvalent immersion vaccine against Flavobacterium psychrophilum and evaluation of immune response to vaccination in rainbow trout fry (Oncorhynchus mykiss L.). Veterinary Research, 48: 43. https://doi.org/10.1186/s13567-017-0448-z

Holm AR, Rippke BE., Noda K. 2014. Legal Requirements and Authorization of Fish Vaccines. Pp. 128-139. In: Fish vaccination Roar Gudding; Atle Lillehaug; ystein Evensen; Margot Granitsas: Chichester, England, Wiley-Blackwell

Hou H., Zhang Y., Ma Z., Wang X., Su P., Wang H., Liu Y. 2022. Life cycle assessment of tiger puffer (Takifugu rubripes) farming: A case study in Dalian, China. Science of the Total Environment, 29: 153522. https://doi.org/10.1016/j.scitotenv.2022.153522

Huang K., Nitin N. 2019. Edible bacteriophage based antimicrobial coating on fish feed for enhanced treatment of bacterial infections in aquaculture industry. Aquaculture, 502: 18-25. https://doi.org/10.1016/j.aquaculture.2018.12.026

Jeremic S., Andjelic D. 2000. Immersive vaccination of young rainbow trout (Oncorhynchus mykiss - Walbaum) with Yersinia ruckeri bacteria. Acta Veterinaria (Beograd), 50(2-3): 77-82

Jeremic S., Radosavljevic V., Jakic-Dimic D. 2005. Current bacterial diseases of freshwater fish. Biotechnology in Animal Husbandry, 21(3-4): 141-151. https://doi.org/10.2298/BAH0504141J

Jeremic S., Radosavljevic V. 2011. Presence of bacterial diseases of fish in Serbia during the period 2005-2010. V International Conference Water & Fish, Faculty of Agriculture, Belgrade, Serbia, June 12–14. Conference proceedings, 152-157.

Johansen L., Jensen I., Mikkelsen H., Bjørn P., Jansen PA., Bergh Ø. 2011. Disease interaction and pathogens exchange between wild and farmed fish populations with special reference to Norway. Aquaculture. 315: 167–186. https://doi.org/10.1016/j.aquaculture.2011.02.014

Jónsdóttir H., Malmquist HJ., Snorrason SS., Gudbergsson G., Gudmundsdottir S. 1998. Epidemiology of Renibacterium salmoninarum in wild Arctic char and brown trout in Iceland. Journal of Fish Biology, 53: 322–339. https://doi.org/10.1111/j.1095-8649.1998.tb00984.x

Khan MA, Khan S, Miyan K. 2011. Aquaculture as a food production system: a review. Biology and Medicine, 3: 291–302.

Kibenge FSB. 2016. Determinants of Emergence of Viral Diseases in Aquaculture, Elsevier BV.

Ljubojević D., Radosavljević V., Milanov D. 2016. The role of gulls (Laridae) in the emergence and spreading of antibiotic resistance in the environment. World’s Poultry Science Journal, 72(4): 853-864. https://doi.org/10.1017/S0043933916000659

Love DC., Fry JP., Cabello F., Good CM., Lunestad BT. 2020. Veterinary drug use in United States net pen Salmon aquaculture: Implications for drug use policy. Aquaculture, 518: 734820. https://doi.org/10.1016/j.aquaculture.2019.734820

Ma J., Bruce TJ., Jones EM., Cain KD. 2019. A Review of Fish Vaccine Development Strategies: Conventional Methods and Modern Biotechnological Approaches. Microorganisms, 7(11): 569. https://doi.org/10.3390/microorganisms7110569

Madetoja J., Lönnström LG., Björkblom C., Uluköy G., Bylund G., Syvertsen C., Gravningen K., Norderhus EA., Wiklund T. 2006. Efficacy of injection vaccines against Flavobacterium psychrophilum in rainbow trout, Oncorhynchus mykiss (Walbaum). Journal of fish diseases, 29(1): 9–20. https://doi.org/10.1111/j.1365-2761.2005.00676.x

Miccoli A., Manni M., Picchietti S., Scapigliati G. 2021. State-of-the-Art Vaccine Research for Aquaculture Use: The Case of Three Economically Relevant Fish Species. Vaccines, 9(2): 140. https://doi.org/10.3390/vaccines9020140].

Metian M., Troell M., Christensen V., Steenbeek J., Pouil S. 2020. Mapping diversity of species in global aquaculture. Reviews in Aquaculture, 12: 1090–1100. https://doi.org/10.1111/raq.12374

Mzula A., Philemon NW., Robinson HM., Gabriel MS. 2019. Current State of Modern Biotechnological-Based Aeromonas hydrophila Vaccines for Aquaculture: A Systematic Review. BioMed Research International, 2019: 3768948. https://doi.org/10.1155/2019/3768948

Nayak SK. 2020. Current prospects and challenges in fish vaccine development in India with special reference to Aeromonas hydrophila vaccine. Fish & shellfish immunology, 100: 283–299. https://doi.org/10.1016/j.fsi.2020.01.064

Naylor RL., Hardy RW., Buschmann AH. Bush SR., Cao L., Klinger DH., Little DC., Lubchenco J., Shumway SE., Troell M. 2021. A 20-year retrospective review of global aquaculture. Nature, 591: 551–563. https://doi.org/10.1038/s41586-021-03308-6)

Ocvirk J., Janc M., Jeremic S., Skalin B. 1988. The first case of enteric redmouth disease in Yugoslavia. Ichthyos, 6, 34–37.

Oh WT., Kim JH., Jun JW., Giri SS., Yun S., Kim HJ., Kim SG., Kim SW., Han SJ., Kwon J., Park SC. 2019. Genetic Characterization and Pathological Analysis of a Novel Bacterial Pathogen, Pseudomonas tructae, in Rainbow Trout (Oncorhynchus mykiss). Microorganisms, 7(10): 432. https://doi.org/10.3390/microorganisms7100432

Pękala-Safińska A. 2018. Contemporary threats of bacterial infections in freshwater fish, Journal of Veterinary Research, 62(3): 261-267. https://doi.org/10.2478/jvetres-2018-0037

Plumb JA., Hanson LA. 2011. Health maintenance and principal microbial diseases of cultured fishes. 3rd Edition, Wiley-Blackwell, Ames.

Pridgeon JW., Klesius PH., Mu X, Carter D,.Fleming K., Xu D., Srivastava K., Reddy G. 2011. Identification of unique DNA sequences present in highly virulent Alabama isolates of Aeromonas hydrophila, Veterinary Microbiology, 152 (1-2): 117-125. https://doi.org/10.1016/j.vetmic.2011.04.008

Radosavljević V., Jeremić S., Žutić J., Milićević V. 2012. Occurrence of Renibacterium salmoninarum in Rainbow trout farm in Serbia. Lucrari Stiintifice Medicina Veterinara, 45(3): 77-80.

Radosavljević V., Jeremić S., Jakić-Dimić D. 2013. Survey and diagnosis of fish diseases in the republic of Serbia during the period 2011-2012 VI International Conference Water & Fish, Faculty of Agriculture, Belgrade, Serbia, Jun, 12–14. Conference proceedings, 124-128.

Radosavljević V., Ćirković M., Ljubojević D., Novakov N., Cvetojević Đ., Žutić J., Milićević V. 2014. Detection of aerolysin (AerA) gene in Aeromonas hydrophila strains isolated from diseased carp. Archives of Veterinary Medicine, 6(2). https://doi.org/10.46784/e-avm.v6i2.154

Radosavljević V., Jakić-Dimić D., Marković Z., Milićević V., Maksimović-Zorić J., Ljubojević D., Ćirković M. 2015. Surveillance of fish diseases in Serbia Conference Proceedings, 102-107. 7th International Conference Water & Fish, Faculty of Agriculture, Belgrade-Zemun, Serbia, June, 13 – 15. 2015. Publisher: University of Belgrade - Faculty of Agriculture.

Radosavljević V., Radanović O., Zdravković N., Savić B., Stanković M., Maksimović Zorić J., Veljović L., Nešić K. 2020. The first outbreak of lactococcosis caused by Lactococcus garvieae in Serbia. Archives of Veterinary Medicine, 13(1): 53–68. https://doi.org/10.46784/e-avm.v13i1.78

Relić R., Marković Z. 2021. Farmed fish welfare, with insight into the situation in Serbia. Veterinarski Glasnik, 75(2): 132-144. https://doi.org/10.2298/VETGL210727011R

Romalde JL., Ravelo C., López-Romalde S., Avendaño‐Herrera R., Magariños B., Toranzo AE. 2005. Vaccination strategies to prevent emerging diseases for Spanish aquaculture. Developments in biologicals, 121: 85-95.

Schulz P., Terech-Majewska E., Siwicki AK., Kazuń B., Demska-Zakęś K., Rożyński M., Zakęś Z. 2020. Effect of Different Routes of Vaccination against Aeromonas salmonicida on Rearing Indicators and Survival after an Experimental Challenge of Pikeperch (Sander lucioperca) in Controlled Rearing. Vaccines, 8(3): 476. https://doi.org/10.3390/vaccines8030476

Skov J., Chettri JK., Jaafar RM., Kania PW., Dalsgaard I., Buchmann K. 2018. Effects of soluble immunostimulants on mucosal immune responses in rainbow trout immersion-vaccinated against Yersinia ruckeri. Aquaculture, 492: 237– 246. https://doi.org/10.1016/j.aquaculture.2018.04.011

Sommerset I., Krossøy B., Biering E. Frost P. 2005. Vaccines for fish in aquaculture, Expert Review of Vaccines, 4:1, 89-101. https://doi.org/10.1586/14760584.4.1.89

Starliper CE. 2011. Bacterial coldwater disease of fishes caused by Flavobacterium psychrophilum. Journal of Advanced Research, 2(2): 97-108. https://doi.org/10.1016/j.jare.2010.04.001.

Subasinghe RP. 2005. Epidemiological approach to aquatic animal health management: opportunities and challenges for developing countries to increase aquatic production through aquaculture. Preventive Veterinary Medicine, 67: 117–24. https://doi.org/10.1016/j.prevetmed.2004.11.004

Tanrikul Tansel T. 2012. Efficacy of a Whole Cell Lactococcus garvieae Vaccine in Rainbow Trout (Oncorhynchus mykiss). Journal of Animal and Veterinary Advances, 11: 886-889.

Yavuzcan Yildiz H., Radosavljevic V., Parisi G., Cvetkovikj A. 2019. Insight into Risks in Aquatic Animal Health in Aquaponics. Aquaponics Food Production Systems. In: Aquaponics Food Production Systems: Combined Aquaculture and Hydroponic Production Technologies for the Future (Goddek S., Joyce A., Kotzen B., Burnell G. (eds.). Springer: Cham, 435-452. ISBN 978-3-030-15942-9/ eISBN 978-3-030-15943-6. https://doi.org/10.1007/978-3-030-15943-6_17

Vendrell D, Balcázar JL, Ruiz-Zarzuela I, de Blas I, Gironés O, Múzquiz JL. 2006. Lactococcus garvieae in fish: a review. Comparative Immunology, Microbiology & Infectious Diseases, 29: 177–198. https://doi.org/10.1016/j.cimid.2006.06.003

Zhang D., Xu DH., Shoemaker CA., Beck BH. 2020. The severity of motile Aeromonas septicemia caused by virulent Aeromonas hydrophila in channel catfish is influenced by nutrients and microbes in water. Aquaculture, 519: 734898. https://doi.org/10.1016/j.aquaculture.2019.734898

Zrncic S., Radosavljevic V. 2017. West Balkans Regional Aquatic Animal Disease Diagnostic. Manual Edition: FAO TCP/RER/3402, Publisher: FAO, Editor: FAO, ISBN: 978-92-5-109642-0

Most read articles by the same author(s)