Overview of the analytical methods for vancomycin and teicoplanin determination in biological matrices

Main Article Content

Ana Stajić
Biljana Jančić-Stojanović

Abstract

Background. Teicoplanin and vancomycin are glycopeptide antibiotics currently in use for treatment of multidrug-resistant bacterial infections.


Scope and Approach. Severe undesirable effects, such as ototoxicity, nephrotoxicity and neutropenia have been reported for vancomycin and teicoplanin, which necessitates monitoring the concentration of these two drugs in different biological samples. In order to obtain precise and accurate results, sensitive, reliable and fast methods are necessary. The main aim of this mini review is to give a clear and concise overview of the recently developed, validated, novel and improved methods for glycopeptide antibiotic analyses in various biological matrices. Also, the variability of the matrices requires optimal and effective sample preparation procedures to be developed, and so these are discussed.


Key Findings and Conclusions. Different liquid chromatography-tandem mass spectrometry (LC-MS/MS) methods have been described for quantitative determination of glycopeptide antibiotics in various biological matrices. It was shown that protein precipitation was a convenient method for sample preparation despite the high number of novel sample preparation methods.

Downloads

Download data is not yet available.

Article Details

How to Cite
Stajić, A., & Jančić-Stojanović, B. (2017). Overview of the analytical methods for vancomycin and teicoplanin determination in biological matrices. Veterinarski Glasnik, 71(2), 87–97. https://doi.org/10.2298/VETGL1702087S
Section
Mini Review

References

Begou O., Kontou A., Raikos N., Sarafidis K., Roilides E., Papadoyannis I. N., Gika H. G. 2017. An ultra-high pressure liquid chromatography-tandem mass spectrometry method for the quantification of teicoplanin in plasma of neonates. Journal of Chromatography B, 215. doi: 10.1016/j.jchromb.2016.01.042

Bijleveld Y., de Haan T., Toersche J., Jorjani S., van der Lee J., Groenendaal F., Dijk P., van Heijst A., Gavilanes A. W. D., de Jonge R., Dijkman K. P., van Straaten H., Rijken M., Zonnenberg I., Cools F., Nuytemans D., Mathôt R. 2014. A simple quantitative method analysing amikacin, gentamicin, and vancomycin levels in human newborn plasma using ion-pair liquid chromatography/tandem mass spectrometry and its applicability to a clinical study. Journal of Chromatography B, 951-952, 110-118. doi: 10.1016/j.jchromb.2014.01.035

Brozmanová H., Kacířová I., Uřinovská R., Šištík P., Grundmann M. 2017. New liquid chromatography-tandem mass spectrometry method for routine TDM of vancomycin in patients with both normal and impaired renal functions and comparison with results of polarization fluoroimmunoassay in light of varying creatinine concentrations. Clinica Chimica Acta, 469, 136-143. doi: 10.1016/j.cca.2017.04.003

Cao Y., Yu J., Chen Y., Zhang J., Wu X., Zhang Y., Li G. 2014. Development and validation of a new ultra-performance liquid chromatographic method for vancomycin assay in serum and its application to therapeutic drug monitoring. Therapeutic Drug Monitoring, 36(2), 175-181. doi: 10.1097/FTD.0b013e3182a458bc

Cazorla-Reyes R., Romero-González R., Frenich A.G., Martínez Vidal J. L., Rodríguez Maresca M. A. 2014. Simultaneous analysis of antibiotics in biological samples by ultra high performance liquid chromatography-tandem mass spectrometry. Journal of Pharmaceutical and Biomedical Analysis, 89, 203-212. doi: 10.1016/j.jpba.2013.11.004

Levine, D.P. 2006. Vancomycin: a history. Clinical Infectious Diseases, S5.

Hoffmann E. V. S. 2007. Mass Spectrometry: principles and applications (third ed.): John Wiley & Sons, England.

Javorska L., Krcmova L. K., Solich P., Kaska M. 2017. Simple and rapid quantification of vancomycin in serum, urine and peritoneal/pleural effusion via UHPLC–MS/MS applicable to personalized antibiotic dosing research. Journal of Pharmaceutical and Biomedical Analysis, 142, 59-65. doi: 10.1016/j.jpba.2017.04.029

Javorska L., Krcmova L. K., Solichova D., Solich P., Kaska M. 2016. Modern methods for vancomycin determination in biological fluids by methods based on high-performance liquid chromatography – A review. Journal of Separation Science(1), 6. doi: 10.1002/jssc.201500600

Jyoti T., Shrayanee D., Zeeshan F., Saif H. 2014. Multidrug resistance: an emerging crisis. Interdisciplinary Perspectives on Infectious Diseases, 2014, 1-7. doi: 10.1155/2014/541340

Kang H. K., Park Y. 2015. Glycopeptide antibiotics: Structure and mechanisms of action. Journal of Bacteriology and Virology, 45(2), 67-78. doi: 10.4167/jbv.2015.45.2

Kazakevich Y R. L. 2007. HPLC for pharmaceutical scientists (second ed.): John Wiley & Sons, New Jersey.

Kim K.-Y., Cho S.-H., Song Y.-H., Nam M.-S., Kim C.-W. 2016. Direct injection LC–MS/MS method for the determination of teicoplanin in human plasma. Journal of Chromatography B, 1008, 125-131. doi: 10.1016/j.jchromb.2015.11.037

Li X., Wang F., Xu B., Yu X., Yang Y., Zhang L., Li H. 2014. Determination of the free and total concentrations of vancomycin by two-dimensional liquid chromatography and its application in elderly patients. Journal of Chromatography B, 969, 181-189. doi: 10.1016/j.jchromb.2014.08.002

Vila M.M.D.C., Machado de Oliveira R., Gonçalves M.M., Tubino M. 2007. Analytical methods for vancomycin determination in biological fluids and in pharmaceuticals. Química Nova(2), 30, 395-399. doi: 10.1590/S0100-40422007000200029

Oyaert M., Peersman N., Kieffer D., Deiteren K., Smits A., Allegaert K., Spriet I., Van Eldere J., Verhaegen J., Vermeersch P., Pauwels S. 2015. Novel LC–MS/MS method for plasma vancomycin: Comparison with immunoassays and clinical impact. Clinica Chimica Acta, 441, 63-70. doi: 10.1016/j.cca.2014.12.012

Poonam Sood L., Juhi T., Bibhabati M. 2010. Methicillin and vancomycin resistant S. aureus in hospitalized patients. Journal of Global Infectious Diseases, 2(3), 275-283. doi: 10.4103/0974-777X.68535

Sheng Y., Zhou B. 2017. High-throughput determination of vancomycin in human plasma by a cost-effective system of two-dimensional liquid chromatography. Journal of Chromatography A, 1499, 48-56. doi: 10.1016/j.chroma.2017.02.061

Svetitsky S., Leibovici, L., & Paul, M. 2009. Comparative efficacy and safety of vancomycin versus teicoplanin: Systematic review and meta-analysis. Antimicrobial Agents And Chemotherapy, 53(10), 4069-4079.

Tsai I. L., Sun H.-Y., Chen G.-Y., Lin S.-W., Kuo C.-H. 2013. Simultaneous quantification of antimicrobial agents for multidrug-resistant bacterial infections in human plasma by ultra-high-pressure liquid chromatography–tandem mass spectrometry. Talanta, 116, 593-603. doi: 10.1016/j.talanta.2013.07.043

Wicha S. G., Kloft C. 2016. Simultaneous determination and stability studies of linezolid, meropenem and vancomycin in bacterial growth medium by high-performance liquid chromatography. Journal of Chromatography B, 1028, 242-248. doi: 10.1016/j.jchromb.2016.06.033

Zhang J., Yang, X., Zhang, Z., Dong, W., & Jiang, Y. 2014a. Accuracy of the analysis of free vancomycin concentration by ultrafiltration in various disease states. RSC Advances, 4(76), 40214-40222.

Zhang M., Moore, G. A., & Young, S. W. 2014b. Determination of vancomycin in human plasma, bone and fat by liquid chromatography/tandem mass spectrometry. Journal of Analytical & Bioanalytical Techniques, 5(3), 1-9. doi: 10.4172/2155-9872.1000196