Elucidating nuclear size control in the Xenopus model system
Main Article Content
Abstract
Background. Nuclear size is a tightly regulated cellular feature. Mechanisms that regulate nuclear size and the functional significance of this regulation are largely unknown. Nuclear size and morphology are often altered in many diseases, such as cancer. Therefore, understanding the mechanisms that regulate nuclear size is crucial to provide insight into the role of nuclear size in disease.
Scope and Approach. The goal of this review is to summarize the most recent studies about the mechanisms and functional significance of nuclear size control using the Xenopus model system. First, this review describes how Xenopus egg extracts, embryos, and embryo extracts are prepared and used in scientific research. Next, the review focuses on the mechanisms and functional effects of proper nuclear size control that have been learned using the Xenopus system.
Key Findings and Conclusions. Xenopus is an excellent in vivo and in vitro experimental platform to study mechanisms of nuclear size control. Given its close evolutionary relationship with mammals and that most cellular processes and pathways are highly conserved between Xenopus and humans, the Xenopus system has been a valuable tool to advance biomedical research. Some of the mechanisms that regulate nuclear size include components of nuclear import such as importin α and NTF2, nuclear lamins, nucleoporins, proteins that regulate the morphology of the endoplasmic reticulum, and cytoskeletal elements.
Downloads
Article Details
Authors retain copyright of the published papers and grant to the publisher the right to publish the article, to be cited as its original publisher in case of reuse, and to distribute it in all forms and media. Articles will be distributed under the Creative Commons Attribution International License (CC BY 4.0).
References
Amodeo A. A., Jukam D., Straight A. F., Skotheim J. M. 2015. Histone titration against the genome sets the DNA-to-cytoplasm threshold for the Xenopus midblastula transition. Proc Natl Acad Sci U S A, 112(10), E1086-1095. doi: 10.1073/pnas.1413990112
Anderson D. J., Hetzer M. W. 2007. Nuclear envelope formation by chromatin-mediated reorganization of the endoplasmic reticulum. Nat Cell Biol, 9(10), 1160-1166. doi: 10.1038/ncb1636
Anderson D. J., Hetzer M. W. 2008. Reshaping of the endoplasmic reticulum limits the rate for nuclear envelope formation. J Cell Biol, 182(5), 911-924. doi: 10.1083/jcb.200805140
Bajpai R., Chen D. A., Rada-Iglesias A., Zhang J., Xiong Y., Helms J., Chang C. P., Zhao Y., Swigut T., Wysocka J. 2010. CHD7 cooperates with PBAF to control multipotent neural crest formation. Nature, 463(7283), 958-962. doi: 10.1038/nature08733
Bermudez J. G., Chen H., Einstein L. C., Good M. C. 2017. Probing the biology of cell boundary conditions through confinement of Xenopus cell-free cytoplasmic extracts. Genesis, 55(1-2). doi: 10.1002/dvg.23013
Brown K. S., Blower M. D., Maresca T. J., Grammer T. C., Harland R. M., Heald R. 2007. Xenopus tropicalis egg extracts provide insight into scaling of the mitotic spindle. J Cell Biol, 176(6), 765-770. doi: 10.1083/jcb.200610043
Chan R. C., Forbes D. I. 2006. In vitro study of nuclear assembly and nuclear import using Xenopus egg extracts. Methods Mol Biol, 322, 289-300.
Collart C., Allen G. E., Bradshaw C. R., Smith J. C., Zegerman P. 2013. Titration of four replication factors is essential for the Xenopus laevis midblastula transition. Science, 341(6148), 893-896. doi: 10.1126/science.1241530
Collart C., Smith J. C., Zegerman P. 2017. Chk1 Inhibition of the Replication Factor Drf1 Guarantees Cell-Cycle Elongation at the Xenopus laevis Mid-blastula Transition. Dev Cell, 42(1), 82-96 e83. doi: 10.1016/j.devcel.2017.06.010
Cruciat C. M., Ohkawara B., Acebron S. P., Karaulanov E., Reinhard C., Ingelfinger D., Boutros M., Niehrs C. 2010. Requirement of prorenin receptor and vacuolar H+-ATPase-mediated acidification for Wnt signaling. Science, 327(5964), 459-463. doi: 10.1126/science.1179802
Dechat T., Pfleghaar K., Sengupta K., Shimi T., Shumaker D. K., Solimando L., Goldman R. D. 2008. Nuclear lamins: major factors in the structural organization and function of the nucleus and chromatin. Genes Dev, 22(7), 832-853. doi: 10.1101/gad.1652708
Desai A., Murray A., Mitchison T. J., Walczak C. E. 1999. The use of Xenopus egg extracts to study mitotic spindle assembly and function in vitro. Methods Cell Biol, 61, 385-412.
Dominguez-Sola D., Ying C. Y., Grandori C., Ruggiero L., Chen B., Li M., Galloway D. A., Gu W., Gautier J., Dalla-Favera R. 2007. Non-transcriptional control of DNA replication by c-Myc. Nature, 448(7152), 445-451. doi: 10.1038/nature05953
Edens L. J., Dilsaver M. R., Levy D. L. 2017. PKC-mediated phosphorylation of nuclear lamins at a single serine residue regulates interphase nuclear size in Xenopus and mammalian cells. Mol Biol Cell, 28(10), 1389-1399. doi: 10.1091/mbc.E16-11-0786
Edens L. J., Levy D. L. 2014. cPKC regulates interphase nuclear size during Xenopus development. J Cell Biol, 206(4), 473-483. doi: 10.1083/jcb.201406004
Edens L. J., Levy D. L. 2016. A Cell-Free Assay Using Xenopus laevis Embryo Extracts to Study Mechanisms of Nuclear Size Regulation. J Vis Exp(114). doi: 10.3791/54173
Edgar B. A., Kiehle C. P., Schubiger G. 1986. Cell cycle control by the nucleo-cytoplasmic ratio in early Drosophila development. Cell, 44(2), 365-372. doi: 0092-8674(86)90771-3 [pii]
Fuller B. G., Lampson M. A., Foley E. A., Rosasco-Nitcher S., Le K. V., Tobelmann P., Brautigan D. L., Stukenberg P. T., Kapoor T. M. 2008. Midzone activation of aurora B in anaphase produces an intracellular phosphorylation gradient. Nature, 453(7198), 1132-1136. doi:10.1038/nature06923
Gruenbaum Y., Goldman R. D., Meyuhas R., Mills E., Margalit A., Fridkin A., Dayani Y., Prokocimer M., Enosh A. 2003. The nuclear lamina and its functions in the nucleus. Int Rev Cytol, 226, 1-62.
Hara Y., Merten C. A. 2015. Dynein-Based Accumulation of Membranes Regulates Nuclear Expansion in Xenopus laevis Egg Extracts. Dev Cell, 33(5), 562-575. doi: 10.1016/j.devcel.2015.04.016
Hellsten U., Harland R. M., Gilchrist M. J., Hendrix D., Jurka J., Kapitonov V., Ovcharenko I., Putnam N. H., Shu S., Taher L., Blitz I. L., Blumberg B., Dichmann D. S., Dubchak I., Amaya E., Detter J. C., Fletcher R., Gerhard D. S., Goodstein D., Graves T., Grigoriev I. V., Grimwood J., Kawashima T., Lindquist E., Lucas S. M., Mead P. E., Mitros T., Ogino H., Ohta Y., Poliakov A. V., Pollet N., Robert J., Salamov A., Sater A. K., Schmutz J., Terry A., Vize P. D., Warren W. C., Wells D., Wills A., Wilson R. K., Zimmerman L. B., Zorn A. M., Grainger R., Grammer T., Khokha M. K., Richardson P. M., Rokhsar D. S. 2010. The genome of the Western clawed frog Xenopus tropicalis. Science, 328(5978), 633-636. doi:10.1126/science.1183670
Hockey L. N., Kilpatrick B. S., Eden E. R., Lin-Moshier Y., Brailoiu G. C., Brailoiu E., Futter C. E., Schapira A. H., Marchant J. S., Patel S. 2015. Dysregulation of lysosomal morphology by pathogenic LRRK2 is corrected by TPC2 inhibition. J Cell Sci, 128(2), 232-238. doi:10.1242/jcs.164152
Isermann P., Lammerding J. 2013. Nuclear mechanics and mechanotransduction in health and disease. Curr Biol, 23(24), R1113-1121. doi: 10.1016/j.cub.2013.11.009
Jevtic P., Edens L. J., Li X., Nguyen T., Chen P., Levy D. L. 2015. Concentration-dependent Effects of Nuclear Lamins on Nuclear Size in Xenopus and Mammalian Cells. J Biol Chem, 290(46), 27557-27571. doi: 10.1074/jbc.M115.673798
Jevtic P., Edens L. J., Vukovic L. D., Levy D. L. 2014. Sizing and shaping the nucleus: mechanisms and significance. Curr Opin Cell Biol, 28, 16-27. doi: 10.1016/j.ceb.2014.01.003
Jevtic P., Levy D. L. 2014. Mechanisms of nuclear size regulation in model systems and cancer. Adv Exp Med Biol, 773, 537-569. doi: 10.1007/978-1-4899-8032-8_25
Jevtic P., Levy D. L. 2015. Nuclear size scaling during Xenopus early development contributes to midblastula transition timing. Curr Biol, 25(1), 45-52. doi: 10.1016/j.cub.2014.10.051
Jevtic P., Levy D. L. 2017. Both Nuclear Size and DNA Amount Contribute to Midblastula Transition Timing in Xenopus laevis. Sci Rep, 7(1), 7908. doi: 10.1038/s41598-017-08243-z
Jevtic P., Milunovic-Jevtic A., Dilsaver M. R., Gatlin J. C., Levy D. L. 2016. Use of Xenopus cell-free extracts to study size regulation of subcellular structures. Int J Dev Biol, 60(7-8-9), 277-288. doi:10.1387/ijdb.160158dl
Kane D. A., Kimmel C. B. 1993. The zebrafish midblastula transition. Development, 119(2), 447-456.
Kobayakawa Y., Kubota H. Y. 1981. Temporal pattern of cleavage and the onset of gastrulation in amphibian embryos developed from eggs with the reduced cytoplasm. J Embryol Exp Morphol, 62, 83-94.
Levy D. L., Heald R. 2010. Nuclear size is regulated by importin alpha and Ntf2 in Xenopus. Cell, 143(2), 288-298. doi: 10.1016/j.cell.2010.09.012
Levy D. L., Heald R. 2012. Mechanisms of intracellular scaling. Annu Rev Cell Dev Biol, 28, 113-135. doi: 10.1146/annurev-cellbio-092910-154158
Liesa M., Palacin M., Zorzano A. 2009. Mitochondrial dynamics in mammalian health and disease. Physiol Rev, 89(3), 799-845. doi: 10.1152/physrev.00030.2008
Liu Y., Singh A. K. 2013. Microfluidic platforms for single-cell protein analysis. J Lab Autom, 18(6), 446-454. doi: 10.1177/2211068213494389
Murphy C. M., Michael W. M. 2013. Control of DNA replication by the nucleus/cytoplasm ratio in Xenopus. J Biol Chem, 288(41), 29382-29393. doi: 10.1074/jbc.M113.499012
Murray A. W. 1991. Cell cycle extracts. Methods Cell Biol, 36, 581-605. doi: 10.1016/S0091-679X(08)60298-8
Newport J., Kirschner M. 1982a. A major developmental transition in early Xenopus embryos: I. characterization and timing of cellular changes at the midblastula stage. Cell, 30(3), 675-686.
Newport J., Kirschner M. 1982b. A major developmental transition in early Xenopus embryos: II. Control of the onset of transcription. Cell, 30(3), 687-696.
Newport J. W., Wilson K. L., Dunphy W. G. 1990. A lamin-independent pathway for nuclear envelope assembly. J Cell Biol, 111(6 Pt 1), 2247-2259.
Nieuwkoop P. D., Faber J. 1967. Normal Table of Xenopus laevis (Daudin) (2nd ed.). Amsterdam: North-Holland Publishing Company.
Poulsen H., Khandelia H., Morth J. P., Bublitz M., Mouritsen O. G., Egebjerg J., Nissen P. 2010. Neurological disease mutations compromise a C-terminal ion pathway in the Na(+)/K(+)- ATPase. Nature, 467(7311), 99-102. doi: 10.1038/nature09309
Puah W. C., Chinta R., Wasser M. 2017. Quantitative microscopy uncovers ploidy changes during mitosis in live Drosophila embryos and their effect on nuclear size. Biol Open, 6(3), 390-401. doi: 10.1242/bio.022079
Raschle M., Knipscheer P., Enoiu M., Angelov T., Sun J., Griffith J. D., Ellenberger T. E., Scharer O. D., Walter J. C. 2008. Mechanism of replication-coupled DNA interstrand crosslink repair. Cell, 134(6), 969-980. doi: 10.1016/j.cell.2008.08.030
Schuster-Bockler B., Lehner B. 2012. Chromatin organization is a major influence on regional mutation rates in human cancer cells. Nature, 488(7412), 504-507. doi: 10.1038/nature11273
Session A. M., Uno Y., Kwon T., Chapman J. A., Toyoda A., Takahashi S., Fukui A., Hikosaka A., Suzuki A., Kondo M., van Heeringen S. J., Quigley I., Heinz S., Ogino H., Ochi H., Hellsten U., Lyons J. B., Simakov O., Putnam N., Stites J., Kuroki Y., Tanaka T., Michiue T., Watanabe M., Bogdanovic O., Lister R., Georgiou G., Paranjpe S. S., van Kruijsbergen I., Shu S., Carlson J., Kinoshita T., Ohta Y., Mawaribuchi S., Jenkins J., Grimwood J., Schmutz J., Mitros T., Mozaffari S. V., Suzuki Y., Haramoto Y., Yamamoto T. S., Takagi C., Heald R., Miller K., Haudenschild C., Kitzman J., Nakayama T., Izutsu Y., Robert J., Fortriede J., Burns K., Lotay V., Karimi K., Yasuoka Y., Dichmann D. S., Flajnik M. F., Houston D. W., Shendure J., DuPasquier L., Vize P. D., Zorn A. M., Ito M., Marcotte E. M., Wallingford J. B., Ito Y., Asashima M., Ueno N., Matsuda Y., Veenstra G. J., Fujiyama A., Harland R. M., Taira M., Rokhsar D. S. 2016. Genome evolution in the allotetraploid frog Xenopus laevis. Nature, 538(7625), 336-343. doi: 10.1038/nature19840
Shachar S., Voss T. C., Pegoraro G., Sciascia N., Misteli T. 2015. Identification of Gene Positioning Factors Using High-Throughput Imaging Mapping. Cell, 162(4), 911-923. doi:10.1016/j.cell.2015.07.035
Shaulov L., Gruber R., Cohen I., Harel A. 2011. A dominant-negative form of POM121 binds chromatin and disrupts the two separate modes of nuclear pore assembly. J Cell Sci, 124(Pt 22), 3822-3834. doi: 10.1242/jcs.086660
Stick R., Hausen P. 1985. Changes in the nuclear lamina composition during early development of Xenopus laevis. Cell, 41(1), 191-200.
Veenstra G. J. 2002. Early Embryonic Gene Transcription in Xenopus. Advances in Developmental Biology and Biochemistry, 12, 85-105.
Voeltz G. K., Prinz W. A., Shibata Y., Rist J. M., Rapoport T. A. 2006. A class of membrane proteins shaping the tubular endoplasmic reticulum. Cell, 124(3), 573-586. doi: 10.1016/j.cell.2005.11.047
Vukovic L. D., Jevtic P., Zhang Z., Stohr B. A., Levy D. L. 2016. Nuclear size is sensitive to NTF2 protein levels in a manner dependent on Ran binding. J Cell Sci, 129(6), 1115-1127. doi:10.1242/jcs.181263
Walters A. D., Bommakanti A., Cohen-Fix O. 2012. Shaping the nucleus: Factors and forces. J Cell Biochem, 113(9), 2813-2821. doi: 10.1002/jcb.24178
Wuhr M., Chen Y., Dumont S., Groen A. C., Needleman D. J., Salic A., Mitchison T. J. 2008. Evidence for an upper limit to mitotic spindle length. Curr Biol, 18(16), 1256-1261. doi:10.1016/j.cub.2008.07.092
Zink D., Fischer A. H., Nickerson J. A. 2004. Nuclear structure in cancer cells. Nat Rev Cancer, 4(9), 677-687. doi: 10.1038/nrc1430
Zumbusch A., Langbein W., Borri P. 2013. Nonlinear vibrational microscopy applied to lipid biology. Prog Lipid Res, 52(4), 615-632. doi: 10.1016/j.plipres.2013.07.003