IncX3 plasmid carrying blaSHV-12 and qnrS1 in a Japanese racehorse-origin Escherichia coli isolate
Main Article Content
Abstract
Plasmids play an important role in the spread of antimicrobial resistance genes (ARGs) in bacteria. This study reports the complete sequence of the IncX3 plasmid identified in Escherichia coli isolated from faeces of a Japanese racehorse. Sequence analysis revealed that this plasmid harbours the blaSHV-12 gene, which encodes an extended spectrum β-lactamase, and the quinolone resistance gene qnrS1. The IncX3 plasmids carrying ARGs have been previously identified in bacteria isolated from humans, animals and a variety of environments. This is the first report of the complete sequence of the IncX3 plasmid carrying blaSHV-12 and qnrS1 genes from a Japanese racehorse, which provides insights into understanding the spread and mechanism of antimicrobial resistance particularly in Japanese racehorses.
Downloads
Article Details
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors retain copyright of the published papers and grant to the publisher the right to publish the article, to be cited as its original publisher in case of reuse, and to distribute it in all forms and media. Articles will be distributed under the Creative Commons Attribution International License (CC BY 4.0).
References
Alonso C.A., Michael G.B., Li J., Somalo S., Simón C., Wang Y., Kaspar H., Kadlec K., Torres C., Schwarz S. 2017. Analysis of blaSHV-12-carrying Escherichia coli clones and plasmids from human, animal and food sources. The Journal of Antimicrobial Chemotherapy, 72:1589–1596. https://doi.org/10.1093/jac/dkx024.
Asai T., Sato C., Masani K., Usui M., Ozawa M., Ogino T., Aoki H., Sawada T., Izumiya H., Watanabe H. 2010. Epidemiology of plasmid-mediated quinolone resistance in Salmonella enterica serovar Typhimurium isolates from food-producing animals in Japan. Gut Pathogens, 2:17. https://doi.org/10.1186/1757-4749-2-17.
Emamalipour M., Seidi K., Zununi Vahed S., Jahanban-Esfahlan A., Jaymand M., Majdi H., Amoozgar Z., Chitkushev L.T., Javaheri T., Jahanban-Esfahlan R., Zare P. 2020. Horizontal Gene Transfer: From Evolutionary Flexibility to Disease Progression. Frontiers in Cell and Developmental Biology, 8:229. https://doi.org/10.3389/fcell.2020.00229.
Endo Y., Ishikawa Y., Arima D., Mae N., Iwamoto Y., Korosue K., Tsuzuki N., Hobo S. 2017. Effects of pre-shipping enrofloxacin administration on fever and blood properties in adult Thoroughbred racehorses transported a long distance. The Journal of Veterinary Medical Science, 79:464–466. https://doi.org/10.1292/jvms.16-0465.
Guo X., Chen R., Wang Q., Li C., Ge H., Qiao J., Li Y. 2022. Global prevalence, characteristics, and future prospects of IncX3 plasmids: A review. Frontiers in Microbiology, 13:979558. https://doi.org/10.3389/fmicb.2022.979558.
Harada K., Shimizu T., Mukai Y., Kuwajima K., Sato T., Kajino A., Usui M., Tamura Y., Kimura Y., Miyamoto T., Tsuyuki Y., Ohki A., Kataoka Y. 2017. Phenotypic and molecular characterization of antimicrobial resistance in Enterobacter spp. isolates from companion animals in Japan. PloS One, 12:e0174178. https://doi.org/10.1371/journal.pone.0174178.
Jacoby G.A., Strahilevitz J., Hooper D.C. 2014. Plasmid-mediated quinolone resistance. Microbiology Spectrum, 2:5, 10.1128/microbiolspec.PLAS-0006-2013. https://doi.org/10.1128/microbiolspec.PLAS-0006-2013.
Li W., Zhang G. 2022. Detection and various environmental factors of antibiotic resistance gene horizontal transfer. Environmental Research, 212:113267. https://doi.org/10.1016/j.envres.2022.113267.
Liakopoulos A., van der Goot J., Bossers A., Betts J., Brouwer M.S.M., Kant A., Smith H., Ceccarelli D., Mevius D. 2018. Genomic and functional characterisation of IncX3 plasmids encoding blaSHV-12 in Escherichia coli from human and animal origin. Scientific Reports, 8:7674. https://doi.org/10.1038/s41598-018-26073-5.
Partridge S.R., Kwong S. M., Firth N., Jensen S.O. 2018. Mobile Genetic Elements Associated with Antimicrobial Resistance. Clinical Microbiology Reviews, 31:e00088-17. https://doi.org/10.1128/CMR.00088-17.
Salah F.D., Soubeiga S.T., Ouattara A.K., Sadji A.Y., Metuor-Dabire A., Obiri-Yeboah D., Banla-Kere A., Karou S., Simpore J. 2019. Distribution of quinolone resistance gene (qnr) in ESBL-producing Escherichia coli and Klebsiella spp. in Lomé, Togo. Antimicrobial Resistance and Infection Control, 8:104. https://doi.org/10.1186/s13756-019-0552-0.
Sato W., Sukmawinata E., Uemura R., Kanda T., Kusano K., Kambayashi Y., Sato T., Ishikawa Y., Toya R., Sueyoshi M. 2020. Antimicrobial resistance profiles and phylogenetic groups of Escherichia coli isolated from healthy Thoroughbred racehorses in Japan. Journal of Equine Science, 31:85–91. https://doi.org/10.1294/jes.31.85.
Tseng C. H., Liu C. W., Liu P.Y. 2023. Extended-Spectrum β-Lactamases (ESBL) Producing Bacteria in Animals. Antibiotics, 12:661. https://doi.org/10.3390/antibiotics12040661.
Usui M., Ozeki K., Komatsu T., Fukuda A., Tamura Y. 2019. Prevalence of Extended-Spectrum β-Lactamase-Producing Bacteria on Fresh Vegetables in Japan. Journal of Food Protection, 82:1663–1666. https://doi.org/10.4315/0362-028X.JFP-19-138.
Wyrsch E.R., Dolejska M., Djordjevic S.P. 2022. Genomic Analysis of an I1 Plasmid Hosting a sul3-Class 1 Integron and blaSHV-12 within an Unusual Escherichia coli ST297 from Urban Wildlife. Microorganisms, 10:1387. https://doi.org/10.3390/microorganisms10071387