Zymography of proteases in honey bees (Apis mellifera) infected with Nosema ceranae
Main Article Content
Abstract
Nosemosis is one of the most important honey bee diseases and is caused by two fungal species of the genus Nosema, i.e., Nosema apis and Nosema ceranae. Evidence suggests that in the coming years, Nosema ceranae, which is less sensitive to fumagillin, could replace Nosema apis as the predominant pathogenic Nosema. Identifying and developing drugs that target these microsporidia without having serious effects on host bee physiology is essential for controlling nosemosis, and this requires information about bee enzymes. Serine proteases, the major protease enzymes in insects, play an important role in the insect immune system. In the present study, some proteases of honey bees infected with N. ceranae were studied by zymography. PCR tests showed that all honey bee samples were infected with N. ceranae. Also, the protein pattern of infected honey bee tissue extracts was determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). Bands with molecular weights of 25, 35, 48, 63, 75, and 100 kDa were observed. Subsequently, the serine proteases in the bees’ digestive tracts ranged in molecular weight between 23-35 kDa, and the molecular weight of cathepsins was 25 kDa by gelatin zymography. Investigation of bee proteases might be useful for acquiring more knowledge about the interaction between host and parasite and to access an effective and low-risk compound for nosemosis treatment.
Downloads
Article Details
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors retain copyright of the published papers and grant to the publisher the right to publish the article, to be cited as its original publisher in case of reuse, and to distribute it in all forms and media. Articles will be distributed under the Creative Commons Attribution International License (CC BY 4.0).
References
Antúnez, K., Martín-Hernández, R., Prieto, L., Meana, A., Zunino, P., & Higes, M. (2009). Immune suppression in the honey bee (Apis mellifera) following infection by Nosema ceranae (Microsporidia). Environmental microbiology, 11(9), 2284-2290.
Beccaria, C., Velázquez, N. S., Chervaz, V., Pirola, S. I., Baravalle, C., Renna, M. S., ... & Dallard, B. E. (2021). Involvement of matrix metalloproteinases and their inhibitors in Staphylococcus aureus chronically infected bovine mammary glands during active involution. Research in Veterinary Science, 137, 30-39.
Cerenius, L., & Söderhäll, K. (2021). Immune properties of invertebrate phenoloxidases. Developmental & Comparative Immunology, 122, 104098.
Chen, Y., Evans, J. D., Smith, I. B., & Pettis, J. S. (2008). Nosema ceranae is a long-present and wide-spread microsporidian infection of the European honey bee (Apis mellifera) in the United States. Journal of invertebrate pathology, 97(2), 186-188.
Chen, Y. P., & Huang, Z. Y. (2010). Nosema ceranae, a newly identified pathogen of Apis mellifera in the USA and Asia. Apidologie, 41(3), 364-374.
Duran Ş., Dede A.F.Ü, Dündar-Orhan Y And Arslanyolu M., (2023). Genome-wide identification and in-silico analysis of papain-family cysteine protease encoding genes in Tetrahymena thermophila. European Journal of Protistology, p.126033.
Gamal, E., Hassan, A. K., Abdel-Rahman, M. A., Hassan, M. K., & Tawfik, M. M. (2023). Immune Responses and Bioactive Peptides of Insect Hemolymph. Egyptian Academic Journal of Biological Sciences. A, Entomology, 16(3), 13-25.
Gisder, S., Schüler, V., Horchler, L. L., Groth, D., & Genersch, E. (2017). Long-term temporal trends of Nosema spp. infection prevalence in Northeast Germany: continuous spread of Nosema ceranae, an emerging pathogen of honey bees (Apis mellifera), but no general replacement of Nosema apis. Frontiers in cellular and infection microbiology, 7, 301.
Glavinic, U., Blagojevic, J., Ristanic, M., Stevanovic, J., Lakic, N., Mirilovic, M., & Stanimirovic, Z. (2022). Use of thymol in Nosema ceranae control and health improvement of infected honey bees. Insects, 13(7), 574.
Guedes, H. L., Rezende Neto, J. M., Fonseca, M. A., Salles, C. M., Rossi-Bergmann, B., & De-Simone, G. (2007). Identification of serine proteases from Leishmania braziliensis. Zeitschrift für Naturforschung C, 62(5-6), 373-381.
Haloi, K., Kalita, M. K., & Devi, D. (2023). Regulation and Characterization of Amylase Enzyme Secretion in the Digestive Tract of Antheraea assamensis Helfer. Indian Journal of Entomology, 01-07.
Huang, W. F., Solter, L. F., Yau, P. M., & Imai, B. S. (2013). Nosema ceranae escapes fumagillin control in honey bees. PLoS pathogens, 9(3), e1003185.
Higes, M., Meana, A., Bartolomé, C., Botías, C., & Martín-Hernández, R. (2013). N osema ceranae (Microsporidia), a controversial 21st century honey bee pathogen. Environmental microbiology reports, 5(1), 17-29.
Higes, M., Nozal, M. J., Alvaro, A., Barrios, L., Meana, A., Martín-Hernández, R., ... & Bernal, J. (2011). The stability and effectiveness of fumagillin in controlling Nosema ceranae (Microsporidia) infection in honey bees (Apis mellifera) under laboratory and field conditions. Apidologie, 42, 364-377.
Higes, M., Martín-Hernández, R., Botías, C., Bailón, E. G., González-Porto, A. V., Barrios, L., ... & Meana, A. (2008). How natural infection by Nosema ceranae causes honeybee colony collapse. Environmental microbiology, 10(10), 2659-2669.
Invernizzi, C., Abud, C., Tomasco, I. H., Harriet, J., Ramallo, G., Campá, J., ... & Mendoza, Y. (2009). Presence of Nosema ceranae in honeybees (Apis mellifera) in Uruguay. Journal of invertebrate pathology, 101(2), 150-153.
Klee, J., Besana, A. M., Genersch, E., Gisder, S., Nanetti, A., Tam, D. Q., ... & Paxton, R. J. (2007). Widespread dispersal of the microsporidian Nosema ceranae, an emergent pathogen of the western honey bee, Apis mellifera. Journal of invertebrate pathology, 96(1), 1-10.
Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227(5259), 680-685.
Malone, L. A., & Gatehouse, H. S. (1998). Effects ofNosema apisInfection on Honey Bee (Apis mellifera) Digestive Proteolytic Enzyme Activity. Journal of Invertebrate Pathology, 71(2), 169-174.
Mussen, E. C., Furgala, B., & Hyser, R. A. (1975). Enzootic levels of nosema disease in the continental United States (1974).
Macedo, M. R., & Freire, M. D. G. M. (2011). Insect digestive enzymes as a target for pest control. Invertebrate Survival Journal, 8(2), 190-198.
Milbrath, M. O., van Tran, T., Huang, W. F., Solter, L. F., Tarpy, D. R., Lawrence, F., & Huang, Z. Y. (2015). Comparative virulence and competition between Nosema apis and Nosema ceranae in honey bees (Apis mellifera). Journal of invertebrate pathology, 125, 9-15.
Nabian, S., Ahmadi, K., Shirazi, M. N., & Sadeghian, A. G. (2011). First detection of Nosema ceranae, a microsporidian protozoa of European honeybees (Apis mellifera) in Iran. Iranian journal of parasitology, 6(3), 89.
Pajuelo, A. G., Torres, C., & Bermejo, F. J. O. (2008). Colony losses: a double blind trial on the influence of supplementary protein nutrition and preventative treatment with fumagillin against Nosema ceranae. Journal of Apicultural Research, 47(1), 84-86.
Schüler, V. (2022). Biological effects of Nosema ceranae infections on honey bees (Apis mellifera) and bumblebees (Bombus terrestris) (Doctoral dissertation).
Sharifi, M ., Gholamzadeh, C M ., Ghadamyari, M., Ajamhasani, M. (2012). identification and characterization of midgut digestive proteases from the rosaceouse branch borer, Osphranteria Coerolescsn Redtenbacher ( Coleopteran : Cerambycidae ) . J , Biochem 49,1,33-47 .
Sironmani, T. A. (1999). Immunological characterization of spore proteins of the microsporidian Nosema bombycis. World Journal of Microbiology and Biotechnology, 15, 607-613.
Tokarev, Y. S., Huang, W. F., Solter, L. F., Malysh, J. M., Becnel, J. J., & Vossbrinck, C. R. (2020). A formal redefinition of the genera Nosema and Vairimorpha (Microsporidia: Nosematidae) and reassignment of species based on molecular phylogenetics. Journal of invertebrate pathology, 169, 107279.
Yücel, B., & Doğaroğlu, M. (2005). The impact of Nosema apis Z. infestation of honey bee (Apis mellifera L.) colonies after using different treatment methods and their effects on the population levels of workers and honey production on consecutive years.
Williams, G. R., Shutler, D., Little, C. M., Burgher-Maclellan, K. L., & Rogers, R. E. (2011). The microsporidian Nosema ceranae, the antibiotic Fumagilin-B®, and western honey bee (Apis mellifera) colony strength. Apidologie, 42, 15-22.
Wu, Z., Li, Y., Pan, G., Tan, X., Hu, J., Zhou, Z., & Xiang, Z. (2008). Proteomic analysis of spore wall proteins and identification of two spore wall proteins from Nosema bombycis (Microsporidia). Proteomics, 8(12), 2447-2461.
Wu Zhenghli, Li Y, Pan G, Tan X, Hu J, Zhou Z, Xiang Z.2008. Proteomic analysis of spore wall proteins and identification of two spore wall proteins from Nosema bombycis (Microsporidia). J.Proteomics,8(12):2447-61.