Effect of method and media type for in vitro fertilization on equine (Equus ferus caballus) embryo development
Main Article Content
Abstract
Demonstrating the role of in vitro fertilization in the equine family, the current study aimed to monitor the rates of equine in vitro-fertilized and cleaved oocytes based on microdroplet and intracytoplasmic sperm injection (ICSI) methods.
The fertilization process was carried out in four main media consisting of Tyrod’s albumin lactate pyruvate and TCM-199 (1:1): F (TCM-199); assigned for the ICSI method, FI (contained 0.01 mg/ml heparin + 0.01 ng/ml hypotaurine), FII (contained 0.3 mg/ml calcium chloride + 0.1 mg/ml magnesium chloride) and FIII (contained 0.05 mg/ml hypotaurine-epinephrine).
The results indicated an increase in the fertilization rate by the ICSI method (65.71%) compared to the microdroplet method (39.25%) (p 0.04). The rates of unfertilized and degenerated oocytes in the ICSI method decreased, compared to the microdroplet method, to 8.57% and 25.72%, respectively; p< 0.001. The rate of fertilized oocytes in the FI medium increased to 47.61% (p< 0.05) compared to oocytes of FII and FIII treatments (37.64% and 30.00%, respectively). On in vitro culture, the rate of cleavage increased to 74.62% in the CI medium (SOF) compared to those in the CII medium (DMEM-F12) (61.29%); p <0.001. Zygotes cultured in the CII medium achieved a higher rate of blastocyst formation (30%) compared to those in the CI medium (26.31%); p< 0.001. Applying the ICSI method and SOF culture media led to high yields of equine embryos.
Downloads
Article Details
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors retain copyright of the published papers and grant to the publisher the right to publish the article, to be cited as its original publisher in case of reuse, and to distribute it in all forms and media. Articles will be distributed under the Creative Commons Attribution International License (CC BY 4.0).
References
Androni D.A., Dodds S., Tomlinson M., Maalouf W.E. 2021. Is pre-freeze sperm preparation more advantageous than post-freeze, Reproduction and Fertility, 2(1):17-25. doi: 10.1530/RAF-20-0041
Bertero A., Ritrovato F., Evangelista F., Stabile V., Fortina R., Ricci A., Revelli A., Vincenti L., Nervo T. 2017. Evaluation of equine oocyte developmental competence using polarized light microscopy. Reproduction. 153(6):775–784. doi: 10.1530/REP-17-0125
Canesin H.S., Brom-de-luna J.G., Choi Y.H., Ortiz I., Diaw M., Hinrichs K. 2017. Blastocyst development after intracytoplasmic sperm injection of equine oocytes vitrified at the germinal-vesicle stage. Cryobiology, 75:52–59. doi: 10.1016/j.cryobiol.2017.02.004
Carnevale E.M. 2016. Advances in collection, transport and maturation of equine oocytes for assisted reproductive techniques. Vet. Clin. N. Am. Equine Pract, 32(3):379–399. doi: 10.1016/j.cveq.2016.07.002
Choi Y.H., Velez I.C., Macias-Garcia B., Riera F.L., Ballard C.S., Hinrichs K.2016. Effect of clinically-related factors on in vitro blastocyst development after equine ICSI. Theriogenol, 85(7):1289–1296. doi: 10.1016/j.theriogenology.2015.12.015
Da Silva J.G., da Silva D.J., de Oliveira J.R.S., do Nascimento W.M., Callou M.A.M., do Monte T.V.S. 2020. Investigation of in vivo and in vitro fertilization methods: a review of the literature. Hum Reprod Arch, 34: e002919. doi:10.4322/hra.002919
Dell’aquila ME, Albrizio M, Maritato F, Minoia P, Hinrichs K. 2003. Meiotic competence of equine oocytes and pronucleus formation after intracytoplasmic sperm injection (ICSI) as related to granulosa cell apoptosis. Biol. Reprod. 68(6):2065– 2072. doi: 10.1095/biolreprod.102.009852
De Munck N., Verheyen G., Van Landuyt L., Stoop D., Van de Velde H. 2013. Survival and post-warming in vitro competence of human oocytes after high security closed system vitrification. Journal of assisted reproduction and genetics, 30(3):361–369. https://doi.org/10.1007/s10815-013-9930-3
Felix M., Turner R., Dobbie T., Hinrichs K. 2022. Successful in vitro fertilization in the horse: production of blastocysts and birth of foals after prolonged sperm incubation for capacitation. Biology of Reproduction, 107(6):1551–1564. doi: 10.1093/biolre/ioac172
Gallegos F., Mancheno A., Mena L., Murillo A. 2022. Bovine in vitro Embryo Production: State of the Art. ESPOCH Congresses: The Ecuadorian Journal of S.T.E.A.M., 2(1): 172–185. doi:10.18502/espoch.v2i2.11192
Gasparrini B., Boccia L., Marchandise J., Di Palo R., George F., Donnay I. 2011. Collection of oocytes from livestock for in vitro embryo production. Reproduction in Domestic Animals, 46(2):141-149. https://doi.org/10.1111/j.1439-0531.2010.01667.x
Glenn T.L., Alex. M., Kotlyar A.M., Seifer D.B. 2021. The Impact of Intracytoplasmic Sperm Injection in Non-Male Factor Infertility—A Critical Review. J. Clin. Med 2021, 10: 2616. doi: 10.3390/jcm10122616
Grøndahl C., Høst T., Brück I., Viuff D., Bezar D. J., Fair T., Greve T., Hyttel P. 2018. In Vitro Production of Equine Embryos, Biology of Reproduction, 52(1):299–307. doi:10.1093/biolreprod/52.monograph_series1.299
Hajian M., Jafarpour F., Aghamiri S.M., Rouhollahi Varnosfaderani S., Rahimi Andani M., Nasr-Esfahani M.H. 2022. The Impact of Two Embryo Culture Media, Synthetic Oviduct Fluid and Commercial BO, on pre-and post-Implantation Development of Cloned SAANEN Goat Embryos. International Journal of Fertility and Sterility, 16(1):23-29. doi: 10.22074/ijfs.2021.531302.1130
Hendriks W.K., Colleoni S., Galli C., Paris D.B., Colenbrander B., Roelen B.A., Stout T.A. 2015. Maternal age and in vitro culture affect mitochondrial number and function in equine oocytes and embryos. ReprodFertilDev, 27(6):957–968. doi:10.1071/RD14450 PMID: 25881326
Herrick J.R., Rajput S., Pasquariello R., Ermisch A., Santiquet N., Schoolcraft W.B., Krisher R.L. 2020. Developmental and molecular response of bovine embryos to reduced nutrients in vitro. Reproduction and Fertility,1(1):51-65. PMID:35128423
Hyde K.L., Aguiar F., Alves B.G., Alves K.A., Gastal G.D., Gastal M.O., Gastal1 E.L. 2022. Preantral follicle population and distribution in the horse ovary. Reproduction and Fertility, 3(2):90–102. doi:10.1530/RAF-21-0100
Jacobson C.C., Choi Y.H., Hayden S.S., Hinrichs K. 2010. Recovery of mare oocytes on a fixed biweekly schedule, and resulting blastocyst formation after intracytoplasmic sperm injection. Theriogenol, 73(8):1116–1126. doi: 10.1016/j.theriogenology.2010.01.013
Lawrenz B., Bixio L.D., Carol C., Yding A.C., Laura M., Bhanu K., Gopal S., Human M. F, Ajay K. 2020. Inhibin A—A Promising Predictive Parameter for Determination of Final Oocyte Maturation in Ovarian Stimulation for IVF/ICSI. Frontiers in Endocrinology, 11:1-10. doi:10.3389/fendo.2020.00307
Liu X., Hu T., Sun W., Hao H., Liu Y., Zhao X., Zhu H., Du W. 2015. Comparison of the developmental competence and quality of bovine embryos obtained by in vitro fertilization with sex-sorted and unsorted semen from seven bulls. Livestock Science, 181:263–270. doi:10.1016/j.livsci.2015.09.009
Lopera-Vasquez R., Hamdi M., Maillo V., Gutierrez-Adan A., Bermejo-Alvarez P., Ramírez M.Á., Yáñez-Mó M., Rizos D. 2017. Effect of bovine oviductalextra cellular vesicles on embryo development and quality in vitro. Reproduction, 153(4):461–470. doi:10.1530/REP-16-0384
Martinez-Rodriguez J.A., Carbajal F.J., Rocio R., Alcantar-Rodriguez A., Medrano A. 2020. Melatonin added to freezing diluent improves canine (Bulldog) sperm cryosurvival. Reproduction and Fertility, 1(1):11-19. doi:10.1530/RAF-20-0022
Merton J.S., Knijn H.M., Flapper H., Roelen B.A.J., Colenbrander B., Bevers M.M., Vos P.L.A.M., Dieleman S.J. 2000. A comparison of techniques for collecting immature oocytes from bovine ovaries. Journal of Animal Science, 78(8):1883-1889. https://doi.org/10.2527/2000.7881883x
Montgomery D.C. 2020. Design and analysis of experiments (9th ed.). Wiley. ISBN-13: 978-1119573054.
Morotti F., Sanches B.V., Pontes J.H., Basso A.C., Siqueira E.R., Lisboa L.A., Seneda M.M. 2014. Pregnancy rate and birth rate of calves from a large-scale IVF program using reverse-sorted semen in Bos indicus, Bos indicus-taurus, and Bos taurus cattle. Theriogenology, 81(5):696–701. doi:10.1016/j.theriogenology. 2013.12.002
Pallottino F., Steri R., Menesati P., Antonucci F., Costa C., Figorilli S., Catillo G. 2015. Comparison between manual and stereovision body traits measurements of Lippizzan horses. Computers and electronics in agriculture, 118:408-413. doi:10.1016/j.compag.2015.09.019
Parrish J.J. 2014. Bovine in vitro fertilization: in vitro oocyte maturation and sperm capacitation with heparin. Theriogenology, 81(1):67-73. doi:10.1016/j.theriogenology.2013.08.005
Radovanović A., KovačevićFilipović M., Milošević I., Lužajić T., Veličković S., Andrejević J., DanilovićLuković J. 2018. Ovarian surface epithelium of hypothyroid newborn and neonatal rats: from PCNA and caspase-3 perspective. VeterinarskiGlasnik, 72(2), 80-89. doi:10.2298/VETGL180320007R
Raju G.A., Chavan R., Deenadayal M., Gunasheela D., Gutgutia R., Haripriya G., Govindarajan M., Patel N.H., Patki A.S. 2013. Luteinizing hormone and follicle stimulating hormone synergy: A review of role in controlled ovarian hyper-stimulation. J Hum Reprod Sci, 6(4):227-234. doi: 10.4103/0974-1208.126285
Ressaissi, Y., Anzalone D.A., Palazzese L., Czernik M., Loi P. 2021. The impaired development of sheep ICSI derived embryos is not related to centriole dysfunction. Theriogenology, 159: 7-12. doi:10.1016/j.theriogenology.2020.10.008
Ribeiro E.S., Bisinotto R.S., Lima F.S. 2016. Reproductive tract score and subclinical endometritis at insemination predict decrease in reproductive performance of dairy cows. Journal of dairy science, 99(2):1532-1548. doi:10.3168/jds.2015-9785
Rizos I.C., Lonergan P., Boland M.P., Dinnyes T., Brem F., Gomendio F., Matas E., de la Fuente F.J., Gutierrez-Adan A., Pintado C., Riesewijk A., Roche J J., Vazquez J.L., Coy P., Gadea J., Wrenzycki E., Warzych G., Niemann H. 2005. Selection of competent oocytes for in vitro maturation and fertilization in ruminants. Animal Reproduction Science, 87(3-4):149-164. https://doi.org/10.1016/j.anireprosci.2005.05.012
Rua S.M.A., Quirino C.R., Matos L.F., Cerqueira Rodrigues A.C., Junior A.B. 2019. Environmental effects and repeatability of the follicular diameter in mares. Brazilian Journal of Animal Science, 48: e20190047. doi:10.1590/rbz4820190047
SAS Institute Inc. (2017). SAS/STAT 14.3 User’s Guide. SAS Institute Inc. ISBN-13: 978-1635261388.
Silva E., Sterman L.Y., Bao S.N., Cushman R.A., Quirino C.R. 2016. Production of bovine embryos by in vitro fertilization and embryo transfer. Animal Reproduction, 13(2):117-125.
Singh J., Kumar A., Totey S.M., Prasad J.K. 2020. Oocyte collection and in vitro embryo production in domestic animals: recent trends and future perspectives. Reproduction in Domestic Animals, 55(8):1031-1037. https://doi.org/10.1111/rda.12959
Sovernigo T.C., Adona P.R., Monzani P.S., Guemra S., Barros F., Lopes F.G., Leal C. 2017. Effects of supplementation of medium with different antioxidants during in vitro maturation of bovine oocytes on subsequent embryo production. ReprodDomestAnim, 52(4):561-9. doi:10.1111/rda.12946
ZareShahneh A., Dalman A., Mohammadi-Sangcheshmeh A., Hosseini S.M. 2021. Oocyte selection for in vitro maturation in assisted reproductive technologies: a review. Journal of Animal Science and Biotechnology, 12(1):67. https://doi.org/10.1186/s40104-021-00598-0